
NASA-TECHN.ICAL TRANSLATION NASAT.T F- 15,889

- MICROSTRIP -D-I-SC-RESONoA-TORS-

Ingo Wolff andiNorbert Knoppik

Translation of "Mikrostrip -,Scheibenresonatoren",
Archiv fUr Elektronik uhd Ubertragungstechnik, ...
Vol. 28, No. 3, 1974, pp. 101-108,1,

((NASA-TT-F- 15889) MICROSTRIP DISC N74-31712
!RESONATORS (Scientific Translation
Service) 29 p HC $4.50 CSCL 09E

Unclas
G3/09 47764

-NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 AUGUST 1974



STANDARD TITLE PAGE

1. Report No. . 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date
August 1974

Microstrip Disc Resonators 6. Performing Orgonization Code

7. Author(s) 8. Performing Organization Report No.

Ingo Wolff and Norbert Knoppik 10. Work Unit No.

11. Contract or Grant No.
9, Performing Organization Name and Address NASw-2483

SCITRAN 13. Type of Report and Period Covered
Box 5456
Santa Barhra .A 9310, Translation

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546 14. Sponsoring Agency Code

15. Supplementary Notes i

Translation of "MiSrostrip,. Scheibenresonatoren'',
Archiv,': fir Elek ronik i-un'd Ubertragungstechnik, V61. 28,
No. 3, 19!74, pp. 101-108, A74-26581

16. Abstract

A method is presented to calcdi te th resonance
frequencies of rectangular and circular micros'trip
disc resonators. The influence of the. electromagnetic
field.distribution iunder the" discs and the influence of
the fringing: f ield at the :edge of thb,:discs "on- the
resonane .freguencie is taken into account y defining
an ef fective .:width or radius and:. a dyamic dielectric.
constant.

17. Key Words (Selectd by Author(s)) 18. Distribution Statement

Unclassified - Unlimited

19. Security Clossif. (of this report) 20. Security Clossif. (of this poge) 21 No. of Popes 22. Price

" 'Unclassified - Unclassified-



MICROSTRIP DISC RESONATORS

Ingo Wolff and Norbert Knoppik

1. Introduction

Resonators are spatial regions in which stainding waves, I\/101*

i. e., oscillations, can build up. The simplest form of a

microstrip resonator can be built up using a conductive seclion

with a length of 7 - ,-72(n= 1,2,...,.,\ wavelengths along the

,conductor) (Figure la), which is either open or short-circuited

at the ends. Shorted line resonators are hardly ever used

because it is difficult to manufacture a short circuit in

strip line technology. For this reason, microstrip line

'resonators are used only in the form of open lines, except in

special cases. The disc resonator can be considered as a

Idegenerate line resonator of very great width. But while only

one standing wa'e appears in the zidirection on the narrow line

resonator (Figure la), on the disc resonator (Figure lb) there

can simultaneously be a standing wave in the x-direction, if the

width w is of the order of magnitude of one half wavelength

or a multiple of that. Thus, the field distribution also

depends on the x-coordinate. The; field distribution becomes

more complex than for the narrow Iline resonator. The disc

resonator is often used also in the circular form, as in Figure

Ic. The oscillations of this resonator can be interpreted as

standing radial waves which are rIflected at the edge of the

* -Numbers--in-the margin indicate, pagination in the-- original
foreign text.
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Figure 1. Plan view of the microstrip disc resonators under
discussion.

resonator and at the center of the disc. In the following, we

shall describe a new theory for calculation of the eigenfrequencies

of individual disc resonators.

2. Calculation of the Eigenfrequencies

By the eigenfrequencies of strip line resonators, we mean

the oscillation frequencies of the resonators without loading

from coupled elements and without the effect of an external

circuit. We must, therefore, solve the eigenvalue problem

determined by the external geometric form of the resonator and

the boundary conditions thus established for the electromagnetic

fields, and determine the frequency at which this eigenvalue

problem has a solution. The eigenvalue problems defined by the

strip line resonators can be solved exactly only with difficulty.

In the calculations described here, therefore, we deal with more

or less accurate approximation calculations performed using an

idealized resonator model.

2.1 The Circular Disc Resonator

The theory for calculation of disc resonators shall be

explained by means of the circular resonator. So far, only one

2



ff

Smagne t i e

Figure 2. Circular disc resonator, (a); \ Resonator model
according to [1], (b);I and a new circular disc
resonator model (c).

approximation method for calculation of the eigenfrequencies

of a circular disc resonator is known from the literature. It

uses a cavity model [1]. Figure -2b shows this model. It is

terminated at the cover areas by two conductive circular discs,

while the generated surface is formed by a magnetic wall. The

diameter, ro , of the cover areas--lis -equal to the diameter of

the real disc on the substrate material. The height, h, of the

model resonator corresponds to the height of the substrate

material. The dielectric coefficient of the material which fills

the model resonator isi,. If a cylindrical coordinate system is

introduced according to Figure 2bi, then we can find a solution

for the electrical field strength of the field independent of the

z-coordinate (null-type oscillations; only these occur in the

frequency range of interest, due to the small substrate height, h!, /102

in the microstrip resonator) in the form

E = A J. (k- r) Cos ( 1 1))
sill <p)J(

Here Jn is the cylinder function of the first type (Bessel

function) and k is the wave number, =,(0;Or)1/. USing

the-Maxwell equations, we can calculate the magnetic-field-

components, from the Ez component, as
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Hr AJn L sin(n)
S]wupor --cos(n )J

k =- A cos (nv) (2)
COY0 I sin(n -p)-

J' is the derivative of the Bessel function with respect to its
n I
argument, (kr).

The boundary conditions at the magnetic wall (r = ro )
require that the tangential magnetic field strength, i. e., the

field component 71 vanish for all angles iil and for the radius

r = ro.  This means that for r = r the derivative of the Bessel
function, J,', ro)\ must be set equal to zero. the m-th zero point of
the derivative of the n-th order Bessel function occurs at the

argument

kro= 2--aroVr/co= n,( (3)

with fR the eigenfrequency of the simprie'resonator model

according to Figure 2b and co the velocity of light in free

space. For m = 1 we have

3,831 fo n=O,
1,841 for n='1,

" = 3,054 for = 32,
4,201 for n=3.

Thus the El10 mode is the basic oscillational mode of the disc

resonator, followed by the E2 10 mode, the E0 10 mode, and the

E310 mode. Figure 3 shows the field distribution in the resonator

model according to Figure 2b for the field types indicated.

If the eigenfrequencies calculated from the resonator model

described, fR or, as is done here, the matching eigenvalues

4
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-F-igure-3.--Fie-l-d-distributi-ons-ina ci-rcuar disc resonator model.

according to Equation (3), are compared with the measurements

(Figure 4), then deviations between the theoretically calculated

and the measured frequencies appear. These deviations vary

in magnitude, depending on the mode of oscillation, the

resonator dimensions, and the substrate material. The measured

frequencies are always lower thant he calculated ones. The

deviations are greatest for the e' genfrequencies.of the E0 10 mode,

and can amount to more than 10% for low r /h ratios ({I O)L7~i',I

In order to be able to calculate the eigenfrequencies of the

resonators with better accuracy, [a new model resonator is

introduced (Figure 2c). An effective radius, reff, which is

always greater than the actual disc radius, ro , takesinto .account

the effect of the electric-ai and magnetic leakage fields at the

edge of the resonator disc, in case the resonator is filled with

5
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Figure 4. Comparison of the eigenvalues according to Equation
(4), , with the arguments calculated from
measurements accordingi to Equation (3),, plotted
versus ro/h. Substrate materials used:
.? A1203, h = 0.068 cm; O Polyguide, h = 0.078 cm;

~ Polyguide, h = 0.156 cm; i Polyguide,
h = 0.312 cm; ir RT-Duroid, h = 0.0261 cm;

SRT-Duroid, h = 0.0531 cm.

air ( -f rs If the resonator has a substrate material with the

dielectric coefficient ur , then the added effect of the

leakage field lines, which run pa rtially in air and partially in

the dielectric, as well as the effect of the inhomogeneous field

distribution in the resonator (see Figure 3) are taken into

consideration by introduction of a "dynamic dielectric coefficient",

- . / 103

In order to define the effective radius, reff, we tilize

an 1882 publication by Kirchoff [2]. As was already shown in [3,

Kirchoff's results on calculation! of the capacity~of a circular

disc capacitor can be used as a gbod approximation if the ratio-

of the radius to the height is greater than one (r/h I), as

is always true for disc resonators. If it is assumed that the

leakage field of the resonator corresponds to that of the

capacitor, to a first appThkXimatin (aside from the angular

dependence of the fields), then the effective radius, reff, of

the disc resonator can be given approximately as [3]:
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re ro I + 2 In n +1,7726 1 (5)

An equivalent dielectric coelfficient, jasJ was previously

given in [4]; but it can only be used to -calculate the static

capacity\of a circular disc capacitor on substrate material

r>) . .cml\ takes into consideration the effect of the

leakage field lines running partially in air and partially in

the dielectric. On the other hand, in the disc resonator we must

also consider the effect of the inhomogeneous distribution of

the field both under the disc and in the leakage field region

on the effective dielectric coefficient (see also [5]). This

dielectric coefficient is designated as E.n . It is calculated

by comparing the energy content of the electrical field in the

resonator having a substrate material with the energy content of

the field in the air-filled (E-~-r= resonator. For the energy

content of the principal field region, we can state that

6(6r AE - [J2 (Iro) - Jn-1 (kro) Jn+i(kro)]

Sfor n = 0
withwith fI for o.

for n $ 0.

From this energy content we can define a dynamic principal field

capacitance, Co, dyn' by arbitrarily introducing a voltage U,

o, dyn

U= Ez(r ro, = O)h AhJ (kro) (7)

at the edge of the disc. In this case, the Ez component of the

cosine function is selected as the solution for the azimuth angle

7



dependence. .U..sing Equations (6) !and (7), the dynamic principal

'field capacitance is found to be

e Ero r J..-1(k ro)J ,+1 (k r0) ( )
O, dynL bh J(kro) (8)

For n 0, it follow, that (yn_ EuT _ r_ ; that is, the

dynamic capacitance is equal to the static capacitance of the

circular disc capacitor. Furthermore, we have

(,3525(:! ,,t J for n = 1

" ' ' 0"i, 856h= 01, for n = 2
6 0, I R, 'tt for n = 3.

If the field distribution of the resonator, which depends on the

azimuth angle, A. , is also considered for the fringe field

capacitance, C, then we can correspondingly calculate a dynamic

leakage field capacitance, Ce,. d:!
e, ...d .

'Cc, dyn * ( ld) ,l 1(ndC, t1

with 6according to Equation (6). The dynamic dielectric

coefficient,; " l , is defined from the dynamic total capacitance

' I

C n CO. rin + ce.a (11)

by taking the quotient of the dynamic total capacitance of the

resonator on carrier material and the dynamic total capacitance

of the resonator with an air filling:

Cdyn (8 EO Er)
-yn Cd . 0 (12)
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The--dynamic -dielectric coefficient, Ei , is a function of the

geometric dimensions of the resonator, the dielectric coefficient,

E , and of the mode of oscillation under investigation. Consider-

ing the effective radius, reff, according to Equation (5) and the

dynamic dielectric coefficient, d"Yi we can calculate the

eigenfrequencies, fo, of the resohator from the relation see

Equation (3)]

2 jo reldynI/co 1 .m (13)

with 'a _ for m = 1 according to Equation (4).

As it is well known (e. g., [6]) that the electromagnetic

field concentrates in the region of the dielectric with rising,

frequency in the presence of a dielectric-air boundary, and

because a corresponding effect must also occur with the microstrip

disc, the dynamic dielectric coefficient, E:S , is also considered

to be frequency-dependent. As was found empirically, the dynamic

dielectric coefficient, dyl , depends linearly on the frequency.

The proportionality factor depends on the diameter of the disc

and on the dielectric coefficient!, eI (see also [7]).

Figure 5 shows the dynamic dielectric coefficient of the

circular disc resonator calculated as a function of ro/h for

iiJ, = 10.4 and for a height, h = 0.068 cm, of substrate

material. Different magnitudes of dynamic dielectric coefficients

appear for the various modes of oscillation. In particular, /104

the dynamic dielectric coefficient for the E010 mode of

oscillation is considerably greater than that for the other field

modes. With diminishing values o ro/h, F first becomes

monotonically smaller. For very small values of ro, the eigen- 1

frequencies of the resonators become very large. .This,, considering

the frequency-dependence of the dynamic dielectric coefficient,

leads to a renewed increase of ra-iY

9



Figure 5. Calculated dynamic dielectric coefficient for the
circular disc resonator as a function of ro/h for
various types of oscillation (Al203 material);

= 10.4, h = 0.068. cm.

The percentage deviation,, jiI of the eigenfrequencies f and f

according to the two resonator models (Figure 2b and 2c),

2/lz 7,foiJi referred to fo, is plotted in Figure 6. The

deviations are considerable, especially for the E01 0 mode. For

small values of ro/Ih(rojh~-l0) they are of the magnitude of 8%. The

deviation d/i is always negative for the resonators under consider-

ation. That is, the eigenfrequencies of the resgonator models

according to Figure 2c are smaller than those of the resonator

model according to Figure 2b.

If the measured resonance frequencies of resonators on

different substrate materials (U 20 3 , Sr = 10,4; PolygIuiide,_ = 5; Dulo

r I 2,31 ) having different heights, h, are compared with the

eigenfrequencies calculated from Equation (13), a maximum deviation

of 1% is found. As Figure 7 shows, this applies over the whole

region of r /h ratios investigated from r /h = 4 to r /h = 120.

10
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Figure 6. Calculated deviation of the eigenfrequency fR
according to Equation (3) from the
eigenfrequency f according to Equation (13):

i=7o--17 referre8 to if~ for various types of
oscillation in a circular disc resonator on Al203
material; -r= 10.4, h = 0.068 cm.

101

Figure 7. Comparison of the eigenvalues for the eigenfrequencies
fo according to Equatibn (13) with measurements. See
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Figure 8. Rectangular sheet resonators: (a) line resonator
type; (b) sheet resonator type, with a schematic
representatioi of the field for one line resonance;
(c) ( E 01 type) and one sheet resonance; (d) (K 0O-T)

2.2 The Rectangular Sheet Resonator

In order to calculate the eigenfrequencies of the rectangular

sheet resonator.'(Figure la and lb), we must differentiate between

line resonances and sheet -esonances. While the line resonances

have a field dependence on only one coordinate (e. g., on the

coordinate z, Figure 8a), the sheet resonances are defined so

that their fields always depend on two coordinates (x and z,

Figure 1 and Figure 8). Both of these groups of oscillation modes

are treated in the following.

12
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Figure 9. Rectangular sheet resonator (a)- simple cavity model
(b); and a new cavity model (c .

2.2.1 The sheet resonances.

We can state .a simple theory for calculating the eigen-

frequencies of the sheet resonances using a cavity model, as for

the circular disc resonators. This first model, again, is built

up so that the electromagnetic fie appears only under the sheet.

That is, the leakage field of thesheet resonator at the edges of

the sheet is neglected; the resonator is terminated at the sides

by an electrical open circuit (a mnagnetic wall) (Figure 9b).

As no tangential magnetic field strength can exist in the magnetic

wall, and because only the oscillation modes independent of the

height coordinate (EY modes, see coordinate system in Figures

1 and 8) can be excited in the resonator for a very small height,

h, of the substrate material, the eigenfrequencies of this

resonator model can be calculated by the relation

CO -,+ in, n = 01 1, 2, ... (14)2 \W} " (14) ./105

Due to the fact that the entire leakage field of the resonator

is neglected in the derivation ofiEquation (14), it is generally

relatively inaccurate (see also the discussion at the end of this

section).

13
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Figure 10. Static principal field capacities (CO) and fringing
field capacities for one edge with the length 1
(Cel) or with the length w (Ce2)for a rectangular

microstrip sheet capacitor; parameter, dielectric
coefficient, 1.'E, ; I 10 cm, h = 0.05 cm.

I

,il-f ~ ~ ...----=-j

Figure 11. On the calculation ofi Weff and lef f .
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In order to discuss te effect of the leakage field at the

lateral edges, we first show in Figure 10 the static leakage

capacitances Cel at the sides of the length Il and Ce2 at the

sides of the length w for a rec'tangular sheet capacitor, as

compared to the static capacitance C of the sheet _capacitor

without the leakage field. As can be found from the theory of

the rectangular sheet capacitor (see Equation (6) from [4]),

the effect of the leakage capacitances can be understood in

analogy with the, discussions for the circular disc capacitor,

in that the total capacitance is calculated as for the capacitance

of an ideal plate capacitor with 'equivalent width and equivalent

length, filled with a material having the dielectric coefficient

As for the circular disc capacitor,jan appropriatemodel is

also selected to calculate the eigenfrequencies of the rectangular

resonator. The model resonator has the dimensions leff and weff,

the height h and a dielectric coefficient ei - (Figure 9c).

It is terminated by conductive surfaces at the cover planes and

by magnetic walls at the side surfaces. The effective edge lengths

are first calculated separately, jas for the effective width of

an air-filled microstrip line [8]. In addition, an edge correction

is made so that the sheet area Aj of the rectangular model

resonator (A = effleff) is identical with the area obtained

by increasing the actual edges (edge lengths 1 and w) by the

lengths '1Jand ,, for the leakage! field region according to [8]

(heavily bordered area in Figure 11).

As for the circular disc resonator, a dynamic dielectric

coefficient is also defined for the rectangular sheet resonator.

It describes both the effect of the leakage field in the air and

dielectric regions and the influence of the inhomogeneous field

distribution on the effective dielectric coefficient. If it is

assumed that the electric field strength of the principal field

15



region under the sheet is described by

E -4 cos -- x os z (15)

and that this region is filled with a dielectric having the

dielectric coefficient e7 , then for the energy content of the

electrical field in this region )e get

Wei _- 2heoer cos2 cos2 - dzd

S o(wl 6)

with for m = for n 0

'- 2 for m 0, for n 0.

Again, a voltage U is arbitrarily defined as the product of Ey

and h at the location x = 0 and z = 0:

U E,(x= 0, z=O)h= Ah (17)

and the dynamic prifncipal field capacitance, CO, dyn, is calculated

with it:

2 t 1 el E o r l CO, stat
CO, dyn - - =n Ud it (18)

For a homogeneous field distribut ion of the electrical field

strength, m = 0 and n = 0, so that >l-i i= and' c0 , dyn
CO,stat .- By ave raging over the csine-formed field distribution,

we obtain the dynamic leakage field capacitance at the edges as:

C2.Cdyn . 1el.dyn l, co 2 ( 2 -z) dz Ce1 ,tat

0 (19)
to

C1, dyn O X d Ca2, stat

,16



Now a-r.y..is- calculated accordingito Equation (12) .from the

dynamic total capacitance:

-cdn G, uyn -? 2 l. (ynl+ 2 (ce2,- -- (20)

The eigenfrequency of the mode of the rectangular

sheet resonator.is calculated from

EYEdyn ' ' 'r
.o=... , .... (21)

using the cavity model defined according to Figure 9c.

Figure 12 shows how the eigenfrequencies calculated according

to Equation (21) differ from the leigenfrequencies calculated accord-

ing to Equation (14) for the E)il mode. In this case, f- , .f

The deviation! ,Ti/ of the eigenfrequencies of the model according

to Figure 9c and Figure 9b is- always negative- fdor -I.

- (material Po-lyguide, -Figure 12a-).- That is, -the eigenfrequency

of the newly introduced model according to Figure 9c is always

lower than that of the simple resonator model according to Figure

9b. If, on the other hand, the difference fl is plotted for a

material with greater dielectric ~coefficient (A1203, 0O,4

Figure 12b), then Zit first becomes negative for small values of

w (at constant value of 1). Thait is, the eigenfrequencies

calculated from Equation (21) are lower than those from Equation

(14). For a certain ratio of w/l, '11] becomes equal to zero.

For larger ratios of w/l, ,]If bec!omes positive. That is, f0 isl
greater than fR. According to Equation (21), f0 is inversely

proportional to (,,i-If2] and, furthermore, independent of Weff and

leff . For low ratios of w/l, the dielectric coefficient ,_,

becomes much smaller than r-I1 (at constant length, 1); but 3it

always passes through a limited range of values. In contrast,

17
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Figure 12. Calculated deviation 'of the eigenfrequency fR
according to Equation (14) from the
eigenfrequency fo according to Equation (21):

II lo t- referred to f for the o1A] type of a
rectangular sheet respnaEor. Parameter: resonance
length 1; (a) on Polyguide material ( \ = 2.315,
h =-0.156 cm); (b) on A1 203 material ( r= 10.4,
h = 0.068 cm).
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the--root--expression for n -J approaches infinity in Equation (14),
while the root expression in Equation (21) at this boundary

transition is always very much smaller than that from Equation (14),

because Weff is very much greater than w for small values of w.

It follows from this that there is a very large deviation, .Ji,

always negative, for small values of w. For large values of w,

-in contrast,- weff is approximately equal to w, so- that-effect

of the dielectric coefficient EtJFn (,d n<r)j on the eigenfrequencies

prevails and f0 can become larger than fR. This is particularly

the case for large values of c4 , because in this case the

relative deviation of Cd>h from eI becomes large. For the

measurements, see Section 2.2.3.

2.2.2 The line resonances

As mentioned previously, those oscillation modes with fields

which depend only on one coordinate, x or z, (Figure 8 a, c)

are designated as line resonances,. .... These oscillation modes are

designated as E4 or E-] modes!. Their field distributions

correspond to those of the quasi-TEM modes on the microstrip lines.

Resonators in which these types are excited can be treated, in

a first approximation, as open-ended line resonators, the eigen-

frequencies of which are derived from the condition that the

line length, 1 ( E modes) o r the line width, w ( E~ \ modes)

is a multiple of the half-wave length:

CO CO
IL = n - fL= m --2-w22"

21 er(w) w efl) (22)

where -Eq] is the effective real static dielectric coefficient

according to Wheeler [8] or Schneider [9] for-a-microstrip line

of width w or 1, respectively.:

Equation (22) does not consilder the effect of the* leakage

field at the end of the line, nor the frequency dependence of the

19



effective dielectric coefficient.- In order to learn the effect

of the leakage field, the leakage capacitances Cel and Ce2 at

the ends of the lines were calculated by the method described

in [4] (e. g., for the Ei,0j mode the leakage capacitance Ce2

SCe-2 = (r- (2~~ -- (23)

Here t,!0J- is the phase velocity and ZD2 the characteristic

impedance for a-picrostrip line with the width 1 on a carrier

material with the dielectric coefficient r .

The end capacitances, Ce2 , are recalculated in short open-

ended line segments having the characteristic impedance of the

line to which they are connected.' These line segments always have /107

the length 41T . This length can be calculated from the character-

istic impedance of the microstrip line of width w [8]

/1 = ' -._ 61) ., (24)

and from the end capacitances Ce2 according to Equation (23):

Al = o (..... ) f (r(1)la - Er )'/ (25)

A corresponding relation can be derived for 1>w lno mode0s\by

exchanging w and 1 in Equation (25). In Equation (24) and

Equatiohn(-25), ..r(D) and ,(1)l are the static dielectric

coefficients for the lines of corresponding width. yi). is the

dynamic dielectric coefficient already defined in Section 2.2.1,
considering the leakage capacitanbe, Cel , at the edges of the res-

onator with the length 1 (Ce2 = 0). j\ is the effective strip

conductor width according to Wheeler [8]. With this assumption,

Fidn( )l is equal to the static effective dielectric coefficient

er -) for the frequency f = 0 [8]. For frequencies greater _tha

zero, 71$] also considers the frequency-dependent properties of

20



themicrostrip line. If haynl is replaced in Equation (25) by

the value er(z)], we can use it in order to calculate in a

simple manner the effect of the leakage field at the ends of

the line resonator, as an approximation.

The eigenfrequencies of the line resonances are calculated

as

o =n for E1o modes

and (26)
(26)

oC= m for E 00 modes

Here L and W are the effective active lengths of the

resonators for the line resonances:

IV=w+ 2iw, L=l+ 2zJI.J (27)

The change in length, 2AK1] aclcording to Equation (25) is

plotted in Figure 13 for line reslonators of different lengths on

Polyguide material. For large line widths ':?1-w: )i and large

line lengths 1 312j) , Th c anas a first approximation be

considered independent of w/l, Iwhile 41 changes strongly for

small values-of w/l. Figure 14 shows the percentage relative

deviation of tAe eigenfrequency O f0  quation (26)]\ from the

eigenfrequency fL Equation (22)1. This deviation is smaller

than zero for all values of T- . !That is, the frequency fo
is always below fL. As can be seen from Figure 14, the error

in the calculation of the eigenfrequencies is some 10%, especially

for short \resonators2.1

21
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-- l 1-

Figure 13. Change in length,, for a line resonator with
consideration of the scattered fields at the ends
of the resonator, versus w/l; parameter, resonator
length 1; ';or- type, rV= 2.315, h = 0.156 cm.

-12m

0 VKjz li i H i:C M,

0 0,2 Q4 0,6 O,8 1,0

Figure 14. Calculated deviation of the e-igenfrequencies f
according to Equation (22) and fo according to
Equation (26): t/i70',N referred to f for the
E 0-2 line type of a rbctangular sheet resonator on
Polyguide material; parameter, resonator length 1;

"j= 2.315, h = 0.156 cm.
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Figure 15. Calculated deviation of the eigenfrequency fR
according to Equation (14) and fo according

to Equation (26): Q~ im 0 _l referred to fo for the

-co line type of a rlectangular sheet resonator on
Polyguide material; parameter, resonator length, 1;
= 2.315, h = 0.156 cm.

In Figure 15, the eigenfrequencies f0  according to

Equation (26) are compared with the eigenfrequencies fR accord-

ing to Equation (14) for m = 0. Tini contrast to Figure 12b, the

deviation., / -iFf--)1becomes positive for low values of w/l

(at constant value of 1) and negative for large values of w/l.

The reasonifor this is that the eigenfrequency fR' according to

Equation (14) ,is independent of w for m = 0. The etigen-

frequency f0, from Equation (26), however, becomes larger for

diminishing values of w, as in this case both L and 0,h

become smaller. The value of ,ilbecomes zero for conductor widths

w, at which the relation Tee Equation (14) and Equation (26)\

IVetlyn L] (28)

is fulfilled. This means that in this case the simple cavity model-

of Figure 9b gives a good approximation for the eigenfrequencies

of the line resonator.
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2.2.-.3-Measurements

Figure 16 shows a comparison between the measured resonance

frequencies, fm' and the calculated eigenfrequencies of sheet

and line resonators on various substrate materials. The

"eigenvalues" assigned to the measured frequencies, fm:

p = E2/m cEd yn-(w)o L = 

or p = 2/m, /VeOEdyr(1) / W j (29)
~~~-~--I- '-- -

are plotted for the line resonances, and

2 /n, ~i/edy [-o_

-( 2 + (30)

for the sheet resonances. This representation makes possible

a comparison of the measured and calculated frequencies of

resonators with different dimensions on different substrate

materials in a single diagram. As follows from Equations (29)

and (30), the eigenvalues for th e line resonances with m = n

and the eigenvalues of the sheet resonances with the same value

of mn do not differ in Figure 16. The deviations of the

measured resonance frequencies of; the line resonances from the

values calculated according to Equation (26) are clearly less

than 1%. On the other hand, thel deviations of the measured and

calculated sheet resonance frequencies are in the order of

magnitude of 1% to 2%. As extenslive technological investigations

show, these deviations are due tio the fact that the sheet

resonances are in part difficult to excite and for that reason

the resonators must be more closely coupled to the external

measuring system.
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Figure 16. Comparison of the "eigenvalues", p, assigned to the
measured frequencies [\IEquations (29) and (30)])with
the eigenvalues determined from Equation (21) (sheet
resonances) or from Equation (26) (line resonandces),
plotted versus w/l. Measured points: ( line type
(LT), _ )) disc type (sT) on Polyguide, h = 0.156 cm;
+ LT, x ST on RT-Duroid, h = 0.0261 cm; j LT,
,) ST on RT-Duroid, h = 0.0531 cm; ~I LT,>- -"! ST
on Al203 , h = 0.068 cm. The measurements are plotted

for resonatbrs of different lengths (frequency range
1 GHz to 12 GHz).
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3. Conclusions

A method for calculating the eigenfrequencies of circular

and rectangular microstrip discresonators is described. Line

resonators are treated as a special case of the rectangular sheet

resonator. A model resonator with effective edge lengths, filled

with a material having the dynamic dielectric coefficient D

takes into consideration both the effect of the leakage field on

the effective dimensions and the influence of the leakage field

and the inhomogeneous field distribution of the leakage field and

principal field on the effective active dielectric coefficient.

The method makes it possible to calculate the eigenfrequencies of

the resonators with considerable more accuracy than was previously

possibl6.

We thank Prof. Dr. H. D*6ring for the critical review of this

work and many suggestions for improvement. The numerical

calculations were done at the computer center of the Technical

College, Aachen.
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